Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Mol Model ; 30(4): 115, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38557702

RESUMEN

CONTEXT: Based on the first principles, the influence of S-atom doping on the electronic and optical properties of stanene is comprehensively examined in this work. The results show that pure stanene is a quasi-metal with zero bandgap. After doping with an S atom, opening the bandgap of pure stanene becomes possible and the state of the stanene is converted from quasi-metal to semiconductor. Analysis of the density of states reveals that the density of states of all doped systems is primarily made of the p-orbital of the Sn. The overlap population analysis showed that charge transfer occurs between S and Sn atoms under different doping concentrations. The charge transfer increases with increasing doping concentration. The charge transfer reaches a maximum at a doping concentration of 9.38%. The increase in doping concentration causes blue-shifting of the absorption and reflection peaks of the doped system as compared to those of pure stanene. It is expected that these studies can provide theoretical guidance for the practical application of stanene in optoelectronic devices. METHODS: All simulations are undertaken with the Cambridge Sequential Total Energy Package (CASTEP) (Wei et al. Physica B: Condensed Matter 545:99, 2018; Bafekry et al. Phys Chem Chem Phys, 2021; Zala et al. Appl Surf Sci, 2022; Bafekry et al. Nanotechnology, 2021; Bafekry et al. Phys Chem Chem Phys, 2021; Bafekry et al. J Phys: Condens Matter, 2021), which is based on density functional theory (DFT). For the exchange correlation, the generalized gradient approximation (GGA) is implemented with the Perdew-Burke-Ernzerhof (PBE) functional Perdew et al. Phys Rev B Condens Matter 48:4978, 1993. Using the Monkhorst-Pack technique, a specific K-point sample of the Brillouin zone was carried out Monkhorst and Pack Phys Rev B 13:5188, 1976. After the convergence tests, the K-point grid was set to 3 × 3 × 1. The plane-wave truncation energy was set to 400 eV. The residual stress for all atoms was 0.03 eV/Å. The energy convergence criterion was 1.0 × 10-5 eV. To prevent recurring interactions between the layers, a vacuum layer with a thickness of 20 Å was established in the Z-direction.

2.
Foods ; 13(8)2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38672871

RESUMEN

Studying diversity in local barley varieties can help advance novel uses for the grain. Therefore, starch was isolated from nine Ethiopian food barley varieties to determine starch structural, pasting, thermal, and digestibility characteristics, as well as their inter-relationships. The amylose content in the varieties significantly varied from 24.5 to 30.3%, with a coefficient of variation of 6.1%. The chain length distributions also varied significantly, and fa, fb1, fb2, and fb3 ranged from 26.3 to 29.0, 48.0 to 49.7, 15.0 to 15.9, and 7.5 to 9.5%, respectively. Significant variations were also exhibited in absorbance peak ratios, as well as thermal, pasting, and in vitro digestibility properties, with the latter two parameters showing the greatest diversity. Higher contents of amylose and long amylopectin fractions contributed to higher gelatinization temperatures and viscosities and lower digestibility. Structural characteristics showed strong relationships with viscosity, thermal, and in vitro digestibility properties. Cross 41/98 and Dimtu varieties are more suitable in functional food formulations and for bakery products. These results might inspire further studies to suggest target-based starch modifications and new product development.

3.
J Mol Model ; 30(3): 63, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38326569

RESUMEN

CONTEXT: This study explores, for the first time, using first principles, the impact of substitutional doping with boron (B), carbon (C), and nitrogen (N) on the adsorption of chromium (Cr) on monolayer MoS2. The effects of doping on the Cr adsorption behavior of MoS2 were investigated using four MoS2 systems, namely, pure, boron (B)-doped, carbon (C)-doped, and nitrogen (N)-doped, in order to gain an in-depth understanding of the mechanism of the effects of doping on the electronic structure and optical properties of Cr adsorbed by MoS2, to optimize the properties of MoS2, to explore new areas of application, and to promote the development of materials science. Four MoS2 adsorption systems of Cr adsorption on pure, B-doped, C-doped, and N-doped MoS2 were optimized, and the optimized results showed that the stable adsorption location of Cr on both pure and doped MoS2 was the hollow location at the top of the folded hexagon. The findings reveal that pure MoS2 has an adsorption effect on Cr, and doped elements B, C, and N can promote the adsorption of Cr on MoS2, and the strong and weak order of this promotion is B > C > N. METHODS: In this paper, we use the CASTEP module in the simulation software Materials Studio to perform simulation calculations and analyses to optimize the simulation of Cr adsorption by MoS2 doped with B, C, and N atoms using the generalized gradient approximation (GGA) plane-wave pseudo-potential method (Perdew et al. Phys Rev Lett 77(18):3865-3968, 1996), as well as Perdew-Burke-Ernzerhof (PBE) generalized functionals (Segall et al. J Phys: Condens Matter 14(11):2717-2744, 2022). The convergence test reveals that it is more reasonable to set the K-point network to 3 × 3 × 1 and the truncation energy to 400 eV. In this paper, a 3 × 3 × 1 supercell structure with 18 S atoms and 9 Mo atoms is selected. The convergence value of the iteration accuracy is 1.0e - 5eV/atom, and all the atomic forces are less than 0.02eV/Å. Additionally, to prevent MoS2 interlayer interaction, a vacuum layer with a thickness of 18 Å is set in the C direction. The geometrical optimization of the model is performed first, and then the corresponding adsorption energies of the model and the nature of the electronic structure are analyzed.

4.
J Mol Model ; 30(3): 75, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38376546

RESUMEN

CONTEXT: To lessen the impact of the dangerous metal Cr, this paper applies the first principles to investigate the adsorption behavior and photoelectric properties of GaS on Cr. The effects of doped GaS on Cr adsorption behavior are investigated with four GaS systems, which are pure, boron (B)-doped, nitrogen (N)-doped, and oxygen (O)-doped, in order to maximize the characteristics of GaS for use in novel sectors, to obtain understanding of the impact of doping on the electronic structure and optical properties of GaS adsorption of Cr, as well as to promote the development of the material. Four GaS adsorbed Cr systems, pure, B-doped, N-doped, and O-doped, are optimized, and the optimized results show that the stable adsorption position of Cr on both pure and doped GaS is the top position of Ga atoms, whereas doped elements B, N, and O can promote the adsorption of Cr on GaS, and the order of the strength of this promotion is B > N > O. METHOD: In this paper, molecular simulation calculations and analyses using the CASTEP module in the software Materials Studio are performed to simulate the structure optimization of GaS-adsorbed Cr materials doped with B, N, and O atoms by using the generalized gradient approximation (GGA) plane-wave pseudopotential approach [1] and the Perdew-Burke-Ernzerhof (PBE) generalized function [2]. From the convergence test, it is reasonable to set the K-point network to 4 × 4 × 1 and the truncation energy to 500 eV [3]. In this paper, a 3 × 3 × 1 supercell structure with 18 S atoms and 18 Ga atoms is selected. The convergence value of the iterative accuracy is 1.0e - 5 eV/atom, and all the atomic forces are less than 0.02 eV/Å. A vacuum layer of 16 Å is also set in the C direction to avoid interlayer interactions of GaS. First, we optimize the geometry of the model and then analyze the nature of the adsorption energy and electronic structure corresponding to the model.

5.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(1): 269-273, 2024 Feb.
Artículo en Chino | MEDLINE | ID: mdl-38387933

RESUMEN

OBJECTIVE: To study the correlation between the number of hemophagocytes and peripheral blood cells in bone marrow of patients with fever of unknown origin. METHODS: A total of 465 patients with fever of unknown origin in our hospital from January 2019 to December 2021 were selected as the research objects, which was to reviewed retrospectively the correlation between the number of hemophagocytes and peripheral blood cells in bone marrow. RESULTS: The positive rates of hemophagocytes detected in the three lines decreased group, the two lines decreased group, the one line decreased group, normal group of the three lines and at least one of the three lines increased group were 86.4%, 62.1%, 38.3%, 34.6% and 33.3%, respectively. The number of hemophagocytes per unit area in the three lines decreased group was significantly higher than that in the other four groups ( P < 0.001). The number of hemophagocytes per unit area in the two lines decreased group was higher than that in the one line decreased group, normal group of three lines and at least one of the three lines increased group ( P < 0.01). There was no significant difference in the number of hemophagocytes per unit area between the group with a decreased number of one line and the other two groups with a normal number of three lines and the group with at least one increased number of three lines (P >0.05). The missed rates of hemophagocytes in the five groups were 15.78%, 22.03%, 62.22%, 77.78% and 53.84%, respectively. CONCLUSION: For patients with fever of unknown origin, especially those with obvious decrease in the number of three lines and two lines in peripheral blood cells, which should pay attention to the detection of hemophagocytes in bone marrow. Meanwhile, if the number of three lines was normal even at least one of the three lines increased, the presence of hemophagocytes in the bone marrow slice should be also carefully observed.


Asunto(s)
Médula Ósea , Fiebre de Origen Desconocido , Humanos , Estudios Retrospectivos , Células Sanguíneas , Células de la Médula Ósea
6.
J Mol Model ; 30(2): 27, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38194209

RESUMEN

CONTEXT: In this study, the electronic structures and optical properties of the pure MoSe2 and O-doped MoSe2 systems under different shear deformations are calculated based on the first-principles approach. It is hoped to provide new possibilities for the design of novel controllable optoelectronic devices and to provide guidance for the application of MoSe2 in the field of optoelectronic devices. The findings indicate that both pure MoSe2 and O-doped MoSe2 systems are somewhat impacted by shear deformation. The pure MoSe2 undergoes a transition from direct to indirect and then to direct bandgap under shear deformation, but still maintains the semiconductor properties. The bandgap of the doped system changes from a direct to an indirect bandgap at 8% shear deformation. According to the examination of the density of states, we find that the density of states of the pure MoSe2 system is mainly contributed by the Mo-d and Se-p orbitals, and the total density of states of the system after O-atom doping mainly originates from the results of the contributions of the Mo-d, Se-p, and O-p orbitals. Optical property analysis reveals that the conductivity and peak value of the pure MoSe2 system are gradually red-shifted toward the low-energy region with the increase of shear deformation. The dielectric function of the O-doped MoSe2 system is red-shifted in the region of 6~10% shear deformation, and the degree of red-shift rises with deformation amount. The findings demonstrate that the electrical structure and optical characteristics of the O-doped MoSe2 system may be modulated effectively by shear deformation, providing a theoretical foundation for expanding the usage of MoSe2 materials in the field of optoelectronic devices. METHODS: This study is founded on the CASTEP module in the Materials-Studio software within the first-principles of the density-functional theory framework. The photoelectric properties of the intrinsic and doped systems under shear deformation are calculated using the Perdew-Burke-Ernzerh (PBE) of generalized function under the generalized gradient approximation (GGA). The Monkhorst-Pack special K-point sampling method is used in the calculations, and a 5 × 5 × 1 K-point grid is used for the calculations with a plane-wave truncation energy of 400 eV in the optimization of the structure of each model. After geometrical optimization, the energy convergence criterion for each atom is 1 × 10-5 eV/atom, the force convergence criterion is 0.05 eV/Å, and a vacuum layer of 20 Å in the c-direction is set.

7.
J Mol Model ; 30(2): 29, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38194004

RESUMEN

CONTEXT: In this paper, the structural stability, electronic structure, and optical properties of monolayer MoSe2 doped with C, O, Si, S, and Te atoms, respectively, under defective conditions are investigated based on first principles. It is found that the system is more structurally stable when defecting a single Se atom as compared to defecting a single Mo or two Se atoms. The electronic structure analysis of the system reveals that intrinsic MoSe2 is a direct bandgap semiconductor. The bandgap value of the system decreases with a single Se atom defect and introduces two new impurity energy levels in the conduction band. The defective systems doped with C and Si atoms all exhibit P-type doping. The total density of states of intrinsic MoSe2 is mainly contributed by the Mo-d and Se-p orbitals, and new density of state peaks appears near the conduction band after the defects of Se atoms. The total density of states of the defective system doped by each atom is mainly contributed by Mo-d, Se-p, and the result of the p orbital contribution of each dopant atom. By analyzing the dielectric function of each system, it is found that the intrinsic MoSe2 has the lowest static permittivity and the C-doped defect system has the highest static permittivity, which reaches 21.42. The C- and Si-doped defect systems are the first to start absorbing the light, and the intrinsic MoSe2 absorbs the light later, with its absorption edge starting at 1.25 eV. In the visible range, the reflection peaks of the systems move toward the high-energy region and the blue-shift phenomenon occurs. It is hoped that applying modification means to modulate the physical properties of the two-dimensional materials will provide some theoretical basis for broadening the application of monolayer MoSe2 in the field of optoelectronic devices. METHODS: This study utilizes the first principle computational software package MS8.0 (Materials studio8.0) under density functional theory (DFT). The exchange-correlation potential (GGA-PBE) is described by the Perdew-Burke-Ernzerhof correlation function in CASTEP, and the potential function adopts the ultrasoft pseudopotential in the inverse space formulation. The plane wave truncation energy Ecut is set to 400 eV, the K-point is taken as 5 × 5 × 1, and the force convergence criterion is 0.05 eV/Å. The convergence accuracy of the total energy of the system is less than 1.0 × 10-5 eV/atom, the tolerance shift is less than 0.002 Å, and the stress deviation is less than 0.1 GPa. The vacuum layer is taken as 15 Å, which is intended to minimize the interlayer force. The vacuum layer was set to 15 Å to avoid the effect of layer-to-layer interaction forces in the crystal cell.

8.
Int J Biol Macromol ; 259(Pt 1): 129139, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38176497

RESUMEN

Normal and waxy maize starches with and without removal of starch granule surface lipids (SGSLs) were crosslinked by POCl3 (0.01 %, 0.1 % and 1 %). Crosslinked starches showed lower swelling power and solubility, but higher pasting viscosity, pseudoplasticity, thixotropy, storage modulus and loss modulus. Crosslinking increased the double helical structure but decreased the crystallinity for waxy maize starch. The phosphorus content of crosslinked waxy maize starches after SGSLs removal increased, indicating SGSLs removal promoted crosslinking. SGSLs removal increased G' and G" for crosslinked waxy maize starches. SGSLs removal increased SP and solubility and decreased pasting and rheological parameters of starches. With increased POCl3 dosage, the effect of SGSLs removal on starch properties was gradually suppressed by crosslinking. Waxy and normal maize starches showed significantly different changes with crosslinking and SGSLs removal, and the presence of amylose seemed to impede the effect of crosslinking and SGSLs removal. The removal of SGSLs could extend the application of crosslinked starch in frozen foods, drinks, and canned foods as thickener and stabilizer, due to its better hydrophilicity and viscous liquid-like rheological properties. The study will assist carbohydrate chemists and food processors in developing new food products.


Asunto(s)
Almidón , Zea mays , Zea mays/química , Almidón/química , Amilosa/química , Amilopectina/química , Viscosidad , Ceras/química
9.
Phytopathology ; : PHYTO08230285R, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-37942861

RESUMEN

Colletotrichum fructicola is the major pathogen of anthracnose in tea-oil trees in China. Control of anthracnose in tea-oil trees mainly depends on the application of chemical fungicides such as carbendazim. However, the current sensitivity of C. fructicola isolates in tea-oil trees to carbendazim has not been reported. Here, we tested the sensitivity of 121 C. fructicola isolates collected from Guangdong, Guangxi, Guizhou, Hainan, Hunan, Jiangsu, and Jiangxi provinces in China to carbendazim. One hundred and ten isolates were sensitive to carbendazim, and 11 isolates were highly resistant to carbendazim. The growth rates, morphology, and pathogenicity of three resistant isolates were identical to those of three sensitive isolates, which indicates that these resistant isolates could form a resistant population under carbendazim application. These results suggest that carbendazim should not be the sole fungicide in control of anthracnose in tea-oil trees; other fungicides with different mechanisms of action or mixtures of fungicides could be considered. In addition, bioinformatics analysis identified two ß-tubulin isotypes in C. fructicola: Cfß1tub and Cfß2tub. E198A mutation was discovered in the Cfß2tub of three carbendazim-resistant isolates. We also investigated the functional roles of two ß-tubulin isotypes. CfΔß1tub exhibited slightly increased sensitivity to carbendazim and normal phenotypes. Surprisingly, CfΔß2tub was highly resistant to carbendazim and showed a seriously decreased growth rate, conidial production, pathogenicity, and abnormal hyphae morphology. Promoter replacement mutant CfΔß2-2×ß1 showed partly restored phenotypes, but it was still highly resistant to carbendazim, which suggests that Cfß1tub and Cfß2tub are functionally interchangeable to a certain degree.

10.
Int J Biol Macromol ; 254(Pt 3): 127991, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37949270

RESUMEN

Roles of temperature, moisture and starch granule-associated surface lipids (SGASL) during heat-moisture treatment (HMT) of waxy highland barley starch were elucidated. Starch without SGASL showed a higher increase in ratio (1016/993 cm-1) (0.095-0.121), lamellar peak area (88), radius of gyration (Rg1, 0.9-1.8 nm) and power-law exponents (0.19-0.42) than native starch (0.038-0.047, 46, 0.1-0.6 nm, 0.04-0.14), upon the same increase in moisture or temperature. Thus, removing SGASL promoted HMT. However, after HMT (30 % moisture, 120 °C), native starch showed lower relative crystallinity (RC, 11.67 %) and lamellar peak area (165.0), longer lamellar long period (L, 14.99 nm), and higher increase in peak gelatinization temperature (9.2-13.3 °C) than starch without SGASL (12.04 %, 399.2, 14.52 nm, 4.7-6.1 °C). This suggested that the resulting SGASL-amylopectin interaction further destroyed starch structure. Starch with and without SGASL showed similar trends in RC, lamellar peak area, L and Rg1 with increasing temperature, but different trends with increasing moisture, suggesting that removing SGASL led to more responsiveness to the effects of increasing moisture. Removing SGASL resulted in similar trends (RC and lamellar peak area) with increasing moisture and temperature, suggesting that the presence of SGASL induced different effects on moisture and temperature.


Asunto(s)
Amilopectina , Hordeum , Temperatura , Calor , Almidón/química , Lípidos
11.
Int J Biol Macromol ; 257(Pt 2): 128535, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38048925

RESUMEN

Potato noodles are a popular food due to their unique texture and taste, but native potato starch often fails to meet consumer demands for precise textural outcomes. The effect of blending small granule (waxy amaranth, non-waxy oat and quinoa) starch with potato starch on the properties of noodles was investigated to enhance quality of noodles. Morphological results demonstrated that small granule starch filled gaps between potato starch granules, some of which gelatinized incompletely. Meanwhile, XRD and FTIR analysis indicated that more ordered structures and hydrogen bonding among starch granules increased with addition of small granule starch. The addition of oat or quinoa starch increased gel elasticity, decreased viscosity of the pastes, and increased the tensile strength of noodles, while addition of 30 % and 45 % waxy amaranth starch did not increase G' value of gel or tensile strength of noodles. These results indicated that amylose molecules played an important role during retrogradation, and may intertwine and interact with each other to enhance the network structure of starch gel in potato starch blended with oat or quinoa starch. This study provides a natural way to modify potato starch for desirable textural properties of noodle product.


Asunto(s)
Solanum tuberosum , Solanum tuberosum/química , Almidón/química , Amilosa/química , Amilopectina/química , Harina/análisis
12.
J Sci Food Agric ; 104(5): 2897-2906, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38018273

RESUMEN

BACKGROUND: Highland hulless barley has garnered attention as a promising economic product and a potential healthy food ingredient. The present study aimed to comprehensively investigate the molecular structure of extractable fibers obtained from a specific highland hulless barley. Water-soluble fiber (WSF) and alkaline-soluble fiber (ASF) were extracted using enzymatic digestion and an alkaline method, respectively. The purified fibers underwent a thorough investigation for their structural characterization. RESULTS: The monosaccharide composition revealed that WSF primarily consisted of glucose (91.7%), whereas ASF was composed of arabinose (54.5%) and xylose (45.5%), indicating the presence of an arabinoxylan molecule with an A/X ratio of 1.2. The refined structural information was further confirmed through methylation, 1 H NMR and Fourier-transform infrared spectroscopy analyses. WSF fiber exclusively exhibited α-anomeric patterns, suggesting it was an α-glucan. It has a low molecular weight of 5 kDa, as determined by gel permeation chromatography. Conversely, ASF was identified as a heavily branched arabinoxylan with 41.55% of '→2,3,4)-Xylp-(1→' linkages. ASF and WSF exhibited notable differences in their morphology, water absorption capabilities and rheological properties. CONCLUSION: Based on these findings, molecular models of WSF and ASF were proposed. The deep characterization of these fiber structures provides valuable insights into their physicochemical and functional properties, thereby unlocking their potential applications in the food industry. © 2023 Society of Chemical Industry.


Asunto(s)
Hordeum , Hordeum/química , Glucanos/análisis , Monosacáridos , Industria de Alimentos , Industria de Procesamiento de Alimentos
13.
Int J Biol Macromol ; 256(Pt 1): 128407, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38007010

RESUMEN

Characterization of local varietal barley quality diversity can help boost further development of novel value-added utilization of the grain. Therefore, in this study starch was isolated from 11 Ethiopian malting barley varieties to determine starch structural, pasting, thermal and digestibility characteristics, and their inter-relationships. The varieties showed significant differences in all amylopectin chain length fractions, and the A, B1, B2 and B3 chains ranged from 25.4 to 30.1, 47.4-50.1, 14.3-16.0 and 7.8-9.0 %, respectively. The varieties also exhibited significant variation in amylose content, relative crystallinity, absorbance peak ratios, pasting and thermal properties. Moreover, on average about 83 % raw starch of the varieties was classified as slowly digestible and resistant, whereas after gelatinization this was reduced to 9 %. Molecular and crystalline structures were strongly related to pasting properties, thermal characteristics and in vitro digestibility of the starches. The study provides information on some starch quality characteristics and the inter-relationships among the parameters, and might inspire further studies to suggest possible target-based starch modifications, and future novel utilization of barley. More studies are required to investigate the association of starch quality parameters with malting quality attributes.


Asunto(s)
Hordeum , Almidón , Almidón/química , Estructura Molecular , Amilopectina/química , Amilosa/química , Viscosidad
14.
J Mol Model ; 29(12): 390, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38032390

RESUMEN

CONTEXT: In this study, the effects of different shear deformations on the structural stability, electronic structure, and optical properties of a Mg atom adsorption system of S vacancy defect SnS2 are systematically investigated based on density functional theory. It is shown that the presence of an S-vacancy defect makes the band gap of the SnS2 system significantly smaller than that of the perfect SnS2 system, and the SnS2 system is changed from a direct band gap semiconductor to an indirect band gap semiconductor. The optimal adsorption position of a Mg atom on the S-vacancy SnS2 system is above the S atom where the adsorption energy is the largest and the system is the most stable. The density of states of the adsorption system is predominantly contributed by the S-3p and Sn-5 s orbital electrons. The imposition of shear deformation leads to the introduction of certain impurity energy levels in the adsorption system, and the forbidden bandwidth near the Fermi energy level decreases. As compared to the intrinsic SnS2, the absorption and reflection peaks of adsorption systems under different shear deformation are red-shifted and appear in the ultraviolet region. This improves the utilization of the adsorption system for ultraviolet light to a great extent. METHODS: The model calculations in this paper are performed using the CASTEP module of the Material Studio (MS) software based on the first principles of Density Functional Theory (DFT) (Wei et al. in Physica B 545:99-106, 2018) for plane wave artifacts. Geometrical optimization and computational procedures are used to calculate the exchange-correlation energy using the Perdew-Burke-Ernzerhof (PBE) generalized function (Perdew et al. in Phys Rev B Condens Matter 48:4978, 1993) of the generalized gradient approximation (GGA). The Monkhorst-Pack method (Monkhorst and Pack in Phys Rev B 13:5188-5192, 1976) was used to rationalize the sampling of the highly symmetric k-points in the Brillouin zone. The grid of k-points is set to be 6 × 6 × 1. The plane-wave truncation energy is set to be 400 eV. The energy convergence criterion is 1.0 × 10-5 eV. The residual stress of all atoms is 0.01 eV/Å. A vacuum layer with a thickness of 15 Å is set up in the z-direction, which ensures that the interactions of the system along the z-axis between the top and the bottom layers can be ignored during the whole simulation process. We construct a 3 × 3 × 1 SnS2 system containing 27 atoms as the computational model. The intrinsic SnS2 contains 9 Sn atoms and 18 S atoms.

15.
Foods ; 12(20)2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-37893765

RESUMEN

Polysaccharides and oligosaccharides are abundantly found in various foods [...].

16.
Foods ; 12(18)2023 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-37761090

RESUMEN

Young hulless barley leaves are gaining recognition for potential health benefits, and the method of extracting polysaccharides from them is critical for potential food industry applications. This study delves into a comparative analysis of six distinct fiber extraction techniques: hot water extraction; high-pressure steam extraction; alkaline extraction; xylanase extraction; cellulase extraction; and combined xylanase and cellulase extraction. This analysis included a thorough comparison of polysaccharide-monosaccharide composition, structural properties, antioxidant activities (DPPH, ABTS, and FRAP), and rheological properties among fibers extracted using these methods. The results underscore that the combined enzymatic extraction method yielded the highest extraction yield (22.63%), while the rest of the methods yielded reasonable yields (~20%), except for hot water extraction (4.11%). Monosaccharide composition exhibited divergence across methods; alkaline extraction yielded a high abundance of xylose residues, whereas the three enzymatic methods demonstrated elevated galactose components. The extracted crude polysaccharides exhibited relatively low molecular weights, ranging from 5.919 × 104 Da to 3.773 × 105 Da across different extraction methods. Regarding antioxidant activities, alkaline extraction yielded the highest value in the ABTS assay, whereas enzymatically extracted polysaccharides, despite higher yield, demonstrated lower antioxidant capacity. In addition, enzymatically extracted polysaccharides exerted stronger shear thinning behavior and higher initial viscosity.

17.
Int J Biol Macromol ; 240: 124430, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37062381

RESUMEN

The distribution of surface proteins/lipids and their effect on physicochemical properties of wheat A- and B-starch were investigated. Small B-starch with higher surface protein (~1.8 %) and lipid (~0.4 %) contents did not differ significantly from specific surface area of large A-starch (~0.2 % protein and ~0.1 % lipid), indicating surface lipids/proteins for starch are characteristic of their biological origin, not directly related to granule size. The surface of A-starch granule was an integrated membrane structure (lipids covered by proteins). B-starch showed a greater decrease in peak and trough viscosity (130 and 82 cP) than A-starch (99 and 52 cP) after removing surface proteins, perhaps because the presence of residual surface lipid as a membrane protected the rigidity of A-starch granule. B-starch showed a greater increase in consistency coefficient (K) (47.01 Pa·sn) than A-starch (20.33 Pa·sn) after removing surface lipids, possibly because the greater loss of surface lipid as complex with amylose in B-starch retarded retrogradation and reduced K. These results show that different distributions and contents of surface proteins/lipids between wheat A- and B-starch granule contribute to the pasting and rheological properties.


Asunto(s)
Proteínas de la Membrana , Triticum , Triticum/química , Almidón/química , Amilosa/química , Viscosidad , Lípidos/química
18.
Carbohydr Polym ; 303: 120477, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36657850

RESUMEN

The effects of starch granule-associated surface lipids removal on hull-less barley starch structure formed by heat-moisture treatment were investigated. Removing surface lipids made the peak at 2θ of 13° disappear and resulted in higher lamellar peak intensity after harsh treatment and a lower reduction in mass fractal dimension (from 2.49 to 2.43) and radius of gyration (from 24.3 to 24.0) when temperature increased from 100 to 120 °C at 20 % moisture. Treatment at 25 % moisture and 120 °C decreased relative crystallinity (from 15.73 % to 7.43 %) and Gaussian peak area (from 646.7 to 137.7) of native starch, and decreased relative crystallinity (from 14.24 % to 12.56 %) and Gaussian peak area (from 604.1 to 539.6) for starch without surface lipids. Different trends of change in lamellar thickness, linear crystallinity, peak temperatures, and enthalpy of gelatinization were observed among modified starches with increasing temperature and/or moisture content. These results demonstrate that removing surface lipids changes structure of heat-moisture treated starch.


Asunto(s)
Hordeum , Almidón , Almidón/química , Calor , Temperatura , Lípidos
19.
Phytopathology ; 113(6): 1022-1033, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36576403

RESUMEN

Colletotrichum fungi could cause anthracnose, a destructive disease in tea-oil trees. The sterol demethylation inhibitor (DMI) tebuconazole has been widely used in controlling plant diseases for many years. However, the baseline sensitivity of Colletotrichum isolates on tea-oil trees to tebuconazole has not been determined. In this study, the sensitivity to tebuconazole of 117 Colletotrichum isolates from tea-oil trees of seven provinces in southern China was tested. The mean effective concentration resulted in 50% mycelial growth inhibition (EC50), 0.7625 µg/ml. The EC50 values of 100 isolates (83%) were lower than 1 µg/ml, and those of 20 isolates (17%) were higher than 1 µg/ml, which implied that resistance has already occurred in Colletotrichum isolates on tea-oil trees. The EC50 values of the most resistant and sensitive isolates (named Ca-R and Cc-S1, respectively) were 1.8848 and 0.1561 µg/ml, respectively. The resistance mechanism was also investigated in this study. A gene replacement experiment indicated that the CYP51A/B gene of resistant isolates Ca-R and Cf-R1 cannot confer Cc-S1 full resistance to DMI fungicides, although three single point mutants, Cc-S1CYP51A-T306A and Cc-S1CYP51A-R478K, exhibited decreased sensitivity to DMI fungicides. This result suggested that resistance of Colletotrichum isolates was partly caused by mutations in CYP51A. Moreover, the expression level of CYP51A/B was almost identical among Ca-R, Cf-R1, Cc-S1, and Cc-S1CYP51A point mutants, which indicated that the resistance was irrelevant to the expression level of CYP51A, and other nontarget-based resistance mechanisms may exist. Our results could help to guide the application of DMI fungicides and be useful for investigating the mechanism of resistance.


Asunto(s)
Colletotrichum , Fungicidas Industriales , Fungicidas Industriales/farmacología , Colletotrichum/genética , Árboles , Enfermedades de las Plantas/microbiología , , China
20.
Int J Biol Macromol ; 219: 473-481, 2022 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-35917853

RESUMEN

Starch granule-associated surface and channel lipids (SGALs) were effectively removed from waxy maize starch (WMS) and normal maize starch (NMS), then the starches were crosslinked by different levels of sodium trimetaphosphate (STMP) (0.25 %, 0.5 %, 1 % and 2 %). The effective removal of SGALs and successful crosslinking, were evidenced by the disappearance of surface-fluorescence and channel-fluorescence of Pro-Q Diamond-stained granules, and the increased phosphorus content respectively. STMP crosslinking increased peak and final viscosity for WMS and NMS. Crosslinking at high STMP levels (0.5 %, 1 % and 2 %) transformed the starch pastes from thixotropic to anti-thixotropic. STMP crosslinking significantly decreased the tan δ values of maize starches, enhancing the elastic structure of the gel. Crosslinked maize starches without SGALs had lower breakdown than crosslinked starches at same STMP level, indicating higher tightened crosslinked starch granules after SGALs removal. Removal of SGALs increased the anti-thixotropy of crosslinked starches, facilitating the reorientation of crosslinked amylopectin/amylose molecules during shearing. Removal of SGALs increased the tan δ values from frequency sweep of WMS and NMS during STMP crosslinking, indicating the presence of surface-lipids and channel-lipids could enhance the elastic gel network structure of crosslinked maize starch.


Asunto(s)
Amilopectina , Amilosa , Amilopectina/química , Amilosa/química , Diamante , Lípidos , Fósforo , Polifosfatos , Almidón/química , Zea mays/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...